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ABSTRACT 

A sec nd-order response matrix method is developed for solving the diffusion equation in a coarse-mesh 
grid. In this method, the problem domain is divided into a grid of coarse meshes (nodes) of the size of a fuel 
assembly. Then, by using the fact that all nodes have the same eigenvalue, an equation is developed for the node 
interface current to flux ratio. The fine-mesh solution in the domain is then obtained by evaluating perturbation 
expressions for the core eigenvalue and the flux with the node interface current to flux ratios and the 
precomputed Green’s functions for the unique assemblies in the system. The Green’s functions and the 
perturbation expressions for the eigenvalue and flux are based on a high-order boundary condition perturbation 
method developed recently. Two example problems are used to assess the accuracy of the new method. 

1. INTRODUCTION 

Many tools in nuclear design and monitoring make use of nodal methods that assume cross 
sections are uniform in each node of the size of a fuel assembly in the radial direction. These 
cross sections are obtained by a homogenization method known as generalized equivalence 
theory (GET). In practice, the homogenization is performed using single assembly 
calculations with a zero-current (or a full specular reflective) boundary condition. For highly 
heterogeneous fuel assemblies and core configurations, the assumption of no net neutron 
leakage (zero-current) at the assembly interface leads to errors in the homogenized 
parameters. This is known as the core environmental effect. In reference [ 11, a high-order 
boundary condition perturbation method was developed to correct the homogenized cross 
sections and discontinuity factors for this effect. This method was subsequently applied 
within the context of GET to improve the accuracy of nodal methods in reference [2]. This 
high-order method corrects the homogenized parameters within the nodal calculations 
without any iteration with assembly calculations to achieve nodal and reconstructed h e -  

http://mckinlev90,llnl.gov
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mesh flux and fuel pin power results with arbitrary accuracy in one-dimensional benchmark 
problems. 

Instead of correcting homogenized parameters as in reference [2], in the present work, a 
response matrix method is developed to first solve for the interface (nodal boundary) 
condition. Using the interface conditions in the expressions for the core eigenvalue and the 
fine-mesh flux developed in reference [2], the fine-mesh solution may be determined to an 
arbitrary accuracy (perturbation order) in the core. We note that this method does not require 
homogenization of the cross sections and that the response matrix for each unique fuel 
assembly is precomputed. The response matrix in this case is a Green's function for a fixed 
source adjoint problem resulting fi-om the high-order boundary condition perturbation 
method. 

2. DERIVATION 

Before we can analyze a core configuration, we must first determine the complete initial 
(unperturbed) solution for each unique assembly in the core. For this paper, the unperturbed 
state of an assembly will be that of an infinite medium approximation in which the current is 
zero across the boundary. This is generally known as the single assembly infinite lattice 
calculation that is performed by the lattice depletion codes. The initial flux, eigenvalue, and 
two adjoints as defined in reference [ 11 are solved and stored for future reference. The 
assemblies are then placed in a core as shown in a one-dimensional model given in Fig. 1. In 
this figure, yis defined as the boundary current to flux ratio with the subscript indicating the 
interface. It is assumed that the core boundary conditions, which are notated as PI and 35 in 
Fig. 1, are known beforehand. 

Assembly Assembly Assembly 
0 1 2 

I I I 

70 Y1 
Figure 1. Example Core Layout 

The eigenvalue for a given assembly, i, may be determined using boundary condition 
perturbation theory as the series 
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This series is dependant only on the initial state and the boundary current to flux ratios along 
the interface. Since there is only one fundamental eigenvalue for the core, the eigenvalue 
computed for each assembly must be equal to this value and thus to each other. This allows 
for a system of equations to be defined in which the unknowns are the interface boundary 
current to flux ratios. Once these values are known, the entire core solution is known. 

2.1 FIRST-ORDER CORE SOLUTION 

If we truncate the eigenvalue series in Eq. (1) to the first order, we can state that the overall 
system eigenvalue is a constant for Fig. 1 as 

4 0  + 4 , 0  = &,I + 4,l = 4 , 2  + 4 2  

where &,i represents the 
eigenvalue is found in reference 1 for assembly i as 

perturbation order eigenvalue for assembly i. The first-order 

where 

The brackets, ( 0 )  , represent phase space integration over the assembly. A subscript to this 

bracket implies a surface integration for the boundary indicated. The function is the 

phase space normalized flux, Po:i is the corresponding adjoint, Fi, is the fission operator, xi” 

is the right side of the assembly, and x i  is the left side. The surface integration is broken up 
into two components in which the boundary to current flux ratio is constant along each 
interface. The negative sign in fiont of the left boundary current to flux ratio, 3-1, is due to 
the outward normal pointing in the negative x-direction. In addition, the left and right 
external surfaces are assumed be subject to the zero current boundary condition. 

Now everything in Eq. (2) is known or can be computed except for the boundary current to 
flux ratios. In Fig. 1 , Eq. (2) shows that two equations may be written for the two unknowns, 
p and E. In a larger system, the unknown boundary current to flux ratios could also be 
solved with a linear system of equations in which the i* equation is given as 
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. r  1 

2.2 SECOND-ORDER CORE SOLUTION 

If we extend the eigenvalue solution to second-order in Eq. (2), then for an assembly the 
eigenvalue can be determined fiom the following set of equations: 

The Green's function adjoint, Viyi, is a function of two-phase variables. Therefore an 
integration of this function returns a function of just one phase space. The second-order 
eigenvalue is determined by substitution of Eqs. (3) and (6) into Eq. (7). The resulting 
equations may be simplified by defining 

where the coefficients are given by 
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With the coefficients known fiom these equations, the eigenvalue for an assembly is easily 
determined as a quadratic polynomial. The th equation is given as 

Not that this system of equations is nonlinear. 

3. EXAMPLES 

3.1 EXAMPLE 1: 

Take two slabs of width 1 each with different material compositions as shown in Fig. 2. The 
boundary current-to-flux ratio, 3: changes sign for Assembly 1. 

I Assembly0 I Assembly 1 I 
Current = 0 Current = 0 

Y 
Figure 2. Sample Problem 1 Core Layout 

We know that the analytical solution fiom reference [ 11 for a slab with infinite medium 
boundary conditions is 
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-(x2+x:)+-(--xo), 1 1  O l x l x ,  

- (x 1 2  + x : ) + L ( L - x ) ,  x, l x S 1  
0 3  

2 0  0 3  

We also know the eigenvalue and the flux for any order. The first few (for a boundary 
condition perturbation at right side) are 

Po = PO* = 1 

For a first order analysis we set the eigenvalues equal to each other: 

4 x 0  + 4 0  = 4 4 1  + 4 1  

or 

which leads to a solution for yas. 

A second order solution is similar: 
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1 st Order 
2nd Order 

4 1 7 0  + 4,0 + 4 0  = $,1 + 4,l + 4 1  

0.500 6.5% 1.6% 
0.468 0.4% 0.2% 

or 

which is a quadratic equation in y . 

Now let’s take a sample case with the parameters given in Table I. These values were chosen 
to demonstrate the importance of higher-order methods and do not reflect any realistic case. 
The exact eigenvalue solution as determined fiom a fine-mesh diflkion code is 0.4696. The 
first order solution starts by solving Eq. (27) to get a yof 0.5. Plugging this into Eq. (26) for 
the left hand side gives an eigenvalue of 0.5 (6.5% error). The second order solution is 
similar but Eq. (29) is solved. Using the positive root results in a yof 0.4807, which gives an 
eigenvalue fiom Eq. (29) of 0.4679 (0.4% error). 

Table I. Sample Problem 1 Parameters 
I I Assemblv 1 I Assemblv2 1 

A code was developed to numerically implement the methods presented in this paper up to 
second order. The eigenvalue and flux are computed and compared to the exact solution. 
The results are shown in Table II with the flux RMS YO defined as 

Table II. Sample Problem 1 Results 
I I Eigenvalue I Error % I Flux RMS % 1 

I --- I --- I Exact I 0.470 I 
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The numerical and analytical solutions agree for the eigenvalue in Table II. The second-order 
results represent a significant increase in accuracy. The graph of the flux is shown in Fig. 3. 
As seen from this figure, excellent agreement in the flux is obtained with the second-order 
method. 

0.65 

0.6 

0.55 

Y 

E 

0.5 

0.45 

0.4 

--tist- r 7  +2nd order 

0 0.2 0.4 0.6 0.8 1 1.2 I .4 1.6 1.8 2 
Position 

Figure 3. Sample Problem 1 Flux 

3.2 EXAMPLE 2 

This example follows from the previous example with the addition of modifying the external 
boundary condition by allowing for some leakage of neutrons through the external 
boundaries. Each external boundary experiences the same change in albedo from the initial 
boundary condition of zero current. In such a case, the interface current to flux ratio y may 
be solved in a quadratic equation similar to Eq. (29): 
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2 
-0.9 

where 2 is the external boundary current to flux ratio. 

YCowmted komputed A b e t  % Error 
0.826 0.743 0.899 17.41 

Using a fine-mesh test code to determine the exact eigenvalue, A k C h  and solving the above 
equation, the following results were obtained 

-0.5 
-0.3 

Table III. Samde Problem 2 Results 

0.690 0.649 0.708 8.36 
0.61 1 0.586 0.613 4.46 

-0.1 
-0.01 

I -0.7 I 0.761 I 0.702 I 0.804 I 12.74 I 

0.526 0.510 0.517 1.41 
0.485 0.472 0.474 0.47 

0.0 
0.01 

0.48 1 0.468 0.470 0.36 
0.476 0.464 0.465 0.3 1 

0.1 
0.3 
0.5 

0.434 0.423 0.422 -0.13 
0.333 0.322 0.326 1.33 
0.225 0.208 0.23 1 9.80 

I 0.7 I 0.108 I 0.080 I 0.135 I 40.66 I 
0.8 
0.85 

I I 

0.046 0.01 1 0.088 87.65 
0.015 -0.025 0.064 139.85 

This result shows an additional perturbation on top of the underlying perturbation theory used 
to solve for the boundary interface condition. As 2 changes from 0.0 on the above table, the 
percent error grows. For negative 3, the error grows slow but steady. However, for the case 
of increasing 2, which represents neutron multiplication outside the system, the error grows 
extremely large after 0.5. By the time it is at 0.85, the computed eigenvalue has reached a 
negative and physically impossible value. In order to model such cases, a higher order 
boundary condition perturbation theory could be used. Another approach is computing a new 
initial condition and adjusting the perturbation equations fi-om reference [ 11 so they no longer 
assume an infinite medium approximation. 

CONCLUSIONS 
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In this paper, we developed a coarse-mesh response matrix method based on high-order 
boundary condition perturbation theory that solves for the interface current-to-flux ratios for 
an entire core as the solution to a system of linear or nonlinear equations in diffusion theory. 
Knowing the current-to-flux ratios, one may then use the high-order boundary condition 
perturbation theory of reference [ 11 to solve for the flux and eigenvalue. 

The regular and the Green’s function adjoint must be solved for each unique assembly type in 
the core. While the indexing in the paper was based on assembly, all precomputed values 
such as initial flux, adjoints, and initial eigenvalue are based on the unique assemblies used in 
the core. Also, the coefficients of the eigenvalue and flux, as given in Eqs. (1 1) - (1 7), are 
needed for the unique assembly types only. This greatly reduces storage requirements. 

The first-order method is very fast since it only involves a linear solution based on the regular 
adjoint, To*. The Green’s function is only needed if the first-order flux is desired. This 
represents a quick solution where the fmt-order approximations are accurate enough. This 
method may also prove to be a good initial seed for the eigenvalue and flux for other methods 
that require a good initial guess. 

Two example problems were used to test the accuracy of the method presented in this paper. 
The first example was a very simple two region case where the adjoints where known 
analytically. The numerical solution was compared to the analytical solution to venfy the 
correctness of the method. The accuracy of the method was M e r  tested for the same 
problem with a non-reflective boundary condition. The results showed that a higher order 
analysis was needed to achieve high accuracy for large boundary current to flux ratios (large 
perturbations fiom the infinite lattice case). 

There are many avenues of future activity stemming forth fiom this work. An obvious 
extension would be to continue this work beyond the second-order theory. This could lead to 
an analysis of error, precomputation time, computation time, rate of convergence, storage 
requirements, etc. for each additional order of perturbation to see the potential benefits of 
high order analysis. 

The Achilles’ heel of this method is in the computation of the Green’s function adjoint, vi. 
The numerical solution requires for the diffusion equation to be solved for each point in phase 
space. Not only does this lead to a large precomputation time, it also affects the accuracy in 
which this adjoint may be solved. High order perturbation methods will see little additional 
advantage without a more accurate solution to this adjoint. 

Finally, this work could be extended to transport theory. Although, the concept should be the 
same, the functions and solution methods may be much more complex. Previous work in 
high-order boundary condition perturbation methods for transport theory [3] show distinct 
advantages in the accuracy gained. 



PHYSOR 2002, Seoul, Korea, October 7-10,2002 

REFERENCES 

1. M. S. McKinley and F. Rahnema, “Higher-Order Boundary Condition Perturbation 
Theory for the Diffusion Approximation”, Nucl. Sei. Eng., 136, 15 (Sept. 2000).. 

2. Rahnema, F., McKinley, M. S., 2001. “Higher-Order Cross Section Homogenization 
Method,” Ann. Nucl. Energy, 29,875 (2002). 

3 .  M. S. McKinley and F. Rahnema, “High-Order Boundary Condition Perturbation Theory 
for the Neutron Transport Equation,” Nucl. Sei. Eng., 140,3 (Mar. 2002). 


